Abstract

Spherical Fibonacci grids (SFG) yield extremely uniform point set distributions on the sphere. This feature makes SFGs particularly well-suited to a wide range of computer graphics applications, from numerical integration, to vector quantization, among others. However, the application of SFGs to problems in which further refinement of an initial point set is required is currently not possible. This is because there is currently no solution to the problem of adding new points to an existing SFG while maintaining the point set properties. In this work, we fill this gap by proposing the extensible spherical Fibonacci grids (E-SFG). We start by carrying out a formal analysis of SFGs to identify the properties which make these point sets exhibit a nearly-optimal uniform spherical distribution. Then, we propose an algorithm (E-SFG) to extend the original point set while preserving these properties. Finally, we compare the E-SFG with a other extensible spherical point sets. Our results show that the E-SFG outperforms spherical point sets based on a low discrepancy sequence both in terms of spherical cap discrepancy and in terms of root mean squared error for evaluating the rendering integral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.