Abstract
Recently, it has been demonstrated that the domain-averaged exchange-correlation energies, Vxc , are capable of tracing the covalent character of atom-atom interactions unequivocally and thus pave the way for detailed bonding analysis within the context of the quantum theory of atoms in molecules (QTAIM) [M. García-Revilla, E. Francisco, P. L. Popelier, A. Martín Pendás, ChemPhysChem 2013, 14, 1211-1218]. Herein, the concept of Vxc is extended within the context of the newly developed multicomponent QTAIM (MC-QTAIM). The extended version, Veexc , is capable of analyzing nonadiabatic wavefunctions and thus is sensitive to the mass of nuclei and can trace "locally" the subtle electronic variations induced by isotope substitution. To demonstrate this capability in practice, ab initio nonadiabatic wavefunctions for three isotopically substituted hydrogen cyanide molecules, in which the hydrogen nucleus was assumed to be a proton, deuterium, or tritium, were derived. The resulting wavefunctions were then used to compute Veexc and it emerged that for the hydrogen-carbon bond, the Veexc was distinct for each isotopic composition and varied in line with chemical expectations. Indeed, the introduction of Veexc paves the way for the investigation of vast numbers of structural and kinetic isotope effects within the context of the MC-QTAIM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.