Abstract

Robust recovery of multistatic synthetic aperture data from conventional ultrasound sequences can enable complete transmit-and-receive focusing at all points in the field of view without the drawbacks of virtual-source synthetic aperture and further enables more advanced imaging applications, such as backscatter coherence, sound speed estimation, and phase aberration correction. Recovery of the multistatic data set has previously been demonstrated on a steered transmit sequence for phased arrays using an adjoint-based method. We introduce two methods to improve the accuracy of the multistatic data set. We first modify the original technique used for steered transmit sequences by applying a ramp filter to compensate for the nonuniform frequency scaling introduced by the adjoint-based method. Then, we present a regularized inversion technique that allows additional aperture specification and is intended to work for both steered transmit and walking aperture sequences. The ramp-filtered adjoint and regularized inversion techniques, respectively, improve the correlation of the recovered signal with the ground truth from 0.9404 to 0.9774 and 0.9894 in steered transmit sequences and 0.4610 to 0.4733 and 0.9936 in walking aperture sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.