Abstract
The pairing energy density functionals (EDFs) that include the spatial derivative and kinetic terms of the pair densities are discussed. The coupling constants of the pairing EDF are adjusted to reproduce the experimental pairing rotational moment of inertia, and the pair-density derivative terms are shown to systematically improve the values of the pairing rotational moments of inertia in Sn and Pb isotopes. It is pointed out that the conventional average pairing gaps overestimate the experimental odd–even mass staggering in the presence of the pair-density derivative terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.