Abstract
The conditional likelihood is widely used in logistic regression models with stratified binary data. In particular, it leads to accurate inference for the parameters of interest, which are common to all strata, eliminating stratum-specific nuisance parameters. The modified profile likelihood is an accurate approximation to the conditional likelihood, but has the advantage of being available for general parametric models. Here, we propose the modified profile likelihood as an ideal extension of the conditional likelihood in generalized linear models for binary data, with generic link function. An important feature is that for the implementation we only need standard outputs of routines for generalized linear models. The accuracy of the method is supported by theoretical properties and is confirmed by simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.