Abstract

We demonstrate the use of an auxiliary microwave field to extend the bandwidth sensitivity of Rydberg-atom-based microwave electrometry. Electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting in Rydberg atom microwave electrometry provide advantageous sensitivity for the resonant detection of microwave (MW) fields because the Stark shift of the target Rydberg state takes the linear form of AT splitting. However, the sensitivity is reduced by several orders of magnitude for detuned MW fields because the Stark shift of the target Rydberg state depends on a weak nonlinear effect. We show that the auxiliary microwave field with appropriate Rabi frequency or detuning could shift the atomic energy levels to bring a particular Rydberg-Rydberg transition of interest for microwave sensing into resonance with the target microwave field. Using the atomic superheterodyne method, we verified the general method that regulates Rydberg energy levels using an auxiliary microwave field. The experimental results of this study confirm that this technique works efficiently for detecting microwave fields detuned by up to 100 MHz from resonance with the field-free Rydberg-Rydberg transition used for sensing. The measurement sensitivity of the detuned target field is increased by a factor of 10 compared with that achieved without the application of the auxiliary dressing field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.