Abstract

Many industrial automation systems rely on time-synchronized (and timely) communication among sensing, computing, and actuating devices. Advances in Ethernet enabled by time-sensitive networking (TSN) standards, being developed by the IEEE 802.1 TSN Task Group, are significantly improving time synchronization as well as worst case latencies. Next-generation industrial systems are expected to leverage advances in distributed time coordinated computing and wireless communications to enable greater levels of automation, efficiency, and flexibility. Significant progress has been made in extending accurate time synchronization over the air (e.g., 802.1AS profile for IEEE 802.11/Wi-Fi). Given the inherently unreliable, varying capacity and latency prone characteristics associated with wireless communications, proving the feasibility of worst case latency performance over the wireless medium is a major research challenge. More specifically, understanding what levels of capacity, reliability, and latency could be guaranteed over wireless links with high reliability are important research questions to guide the development of new radios, protocols, and time coordinated applications. This paper provides an overview of the potential applications, requirements, and unique research challenges to extend TSN capabilities over wireless. The paper also describes advances in wireless technologies (e.g., next-generation 802.11 and 5G standards) toward achieving reliable and accurate time distribution and timeliness capabilities. It also provides a classification of wireless applications and a reference architecture for enabling the integration of wired and wireless TSN capabilities in future industrial automation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.