Abstract

In the present paper, we consider the generalized equation $0\in f(x)+g(x)+\mathcal F(x)$, where $f:\mathcal X\to \mathcal Y$ is Fr\'{e}chet differentiable on a neighborhood $\Omega$ of a point $\bar{x}$ in $\mathcal X$, $g:\mathcal X\to \mathcal Y$ is differentiable at point $\bar{x}$ and linear as well as $\mathcal F$ is a set-valued mapping with closed graph acting between two Banach spaces $\mathcal X$ and $\mathcal Y$. We study the above generalized equation with the help of extended Newton-type method, introduced in [ M. Z. Khaton, M. H. Rashid, M. I. Hossain, Convergence Properties of extended Newton-type Iteration Method for Generalized Equations, Journal of Mathematics Research, 10 (4) (2018), 1--18, DOI:10.5539/jmr.v10n4p1, under the weaker conditions than that are used in Khaton et al. (2018). Indeed, semilocal and local convergence analysis are provided for this method under the conditions that the Frechet derivative of $f$ and the first-order divided difference of $g$ are Hölder continuous on $\Omega$. In particular, we show this method converges superlinearly and these results extend and improve the corresponding results in Argyros (2008) and Khaton $et$ $al.$ (2018).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.