Abstract

We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.