Abstract

Modeling the behavior of contaminants in a subsurface flow is important in predicting the fate of the pollutants, in risk assessment, and as a preliminary step of the mitigation process. A two-dimensional transport model with advection and dispersion is used as the deterministic model of a conservative contaminant transport in the subsurface. With the system model alone, it is very difficult to predict the true dynamic state of the pollutant. Therefore, observation data are needed to guide the deterministic system model to assimilate the true state of the contaminant. Extended Kalman Filter (EKF), which is essentially a first order approximation to an infinite dimensional problem, is used in this study to predict the contaminant plume transport. A traditional root mean square error (RMSE) of pollutant concentrations is used to examine the effectiveness of the EKF in contaminant transport modeling. The result shows that EKF can reduce 74 to 91% of prediction errors compared to the numerical method while wo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.