Abstract

Myriophyllum aquaticum (Vell.) Verdc. is heterophyllous in nature with highly dissected simple leaves consisting of several lobes. KNOX (KNOTTED1-LIKE HOMEOBOX) genes are believed to have played an important role in the evolution of leaf diversity. Up-regulation of KNOX during leaf primordium initiation can lead to leaf dissection in plants with simple leaves and, if overexpressed, can produce ectopic meristems on leaves. A previous study on KNOX gene expression in the aerial form of this species showed that this gene is expressed in the shoot apical meristem (SAM), as well as in leaf primordia P0 to P8. Based on these results, it was hypothesized that the prolonged expression of the MaKN1 (Myriophyllum aquaticum Knotted1-like homeobox) gene beyond P8, might play an important role in the generation of more lobes, longer lobes, and hydathode formation in the aquatic leaves of M. aquaticum. The technique of in situ hybridization was carried out using a previously sequenced 300 bp fragment of MaKN1 to determine the expression patterns of this gene in the shoot of aquatic forms of the plant. Expression patterns of MaKN1 revealed that the SAM and leaf primordia of aquatic forms of M. aquaticum at levels P0 (youngest) to P4 were distributed throughout these structures. The level of expression of this MaKN1 gene progressively became more localized to lobes in older leaf primordia (levels P5 to P12). Previous studies of aerial forms of this plant showed MaKN1 expression until P8. Our results with aquatic forms show that the highly dissected leaf morphology in aquatic forms was the result of the prolonged expression of MaKN1 beyond P8. This resulted in the formation of elongated and slightly more numerous lobes, and hydathodes in aquatic forms. These findings support the view that KNOX genes are important developmental regulators of leaf morphogenesis and have played an important role in the evolution of leaf forms in the plant kingdom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.