Abstract

Extended end-plate moment connections are used in a number of applications including the beam-to-column connections in seismic moment resisting frames (MRFs) and replaceable link-to-frame connections in eccentrically braced frames (EBFs). While the extended end-plate connections have been extensively studied for MRF applications, little is known about their performance in EBFs. The loading conditions and the acceptance criterion are different for these connections when they are used in MRFs or in EBFs. This paper presents an experimental and numerical study undertaken to investigate the performance of extended unstiffened and stiffened end-plate connections used in replaceable shear links. Pursuant to this goal, 10 nearly full-scale EBF tests were conducted where the thickness, width and stiffening of the end-plate were considered as the variables. The results showed that end-plates designed according to the AISC guidelines or Eurocode provisions show acceptable performance in terms of the target link rotation angle. Due to strain hardening effects, thinner plates than the ones suggested by the codes were also found to show satisfactory performance. Finite element simulations were conducted to investigate the bending strains for different plate thicknesses and to study the levels of axial forces developed in the links. Modifications to the AISC design guidelines have been proposed to determine the plastic resistance of end-plated connections more accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.