Abstract

With the growing amount and diversity of intermediate omics data complementary to genomics (e.g. DNA methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics data into conventional genomic evaluation. The omics data help decode the multiple layers of regulation from genotypes to phenotypes, thus forms a connected multilayer network naturally. We developed a new method named NN-MM to model the multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear mixed models ("MM") to multilayer artificial neural networks ("NN"). NN-MM incorporates intermediate omics features by adding middle layers between genotypes and phenotypes. Linear mixed models (e.g. pedigree-based BLUP, GBLUP, Bayesian Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships between intermediate omics features and phenotypes. NN-MM had significantly better prediction performance than the recently proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach, NN-MM can handle various patterns of missing omics measures and allows nonlinear relationships between intermediate omics features and phenotypes. NN-MM has been implemented in an open-source package called "JWAS".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.