Abstract

The endocytic receptor megalin constitutes the major pathway for clearance of low-molecular weight plasma proteins from the glomerular filtrate into the renal proximal tubules. Furthermore, the receptor has been implicated in a number of other functions in the kidney including uptake and activation of 25-(OH) vitamin D3, calcium and sodium reabsorption as well as signal transduction. We used genome-wide expression profiling by microarray technology to detect changes in the gene expression pattern in megalin knockout mouse kidneys and to uncover some of the renal pathways affected by megalin deficiency. Alterations were identified in several (patho)physiologic processes in megalin-deficient kidneys including the renal vitamin D metabolism, transforming growth factor (TGF)-beta1 signal transduction, lipid transport and heavy metal detoxification. Most importantly, changes were detected in the mRNA levels of 25-(OH) vitamin D-24-hydroxylase and 25-(OH) vitamin D-1alpha-hydroxylase as well as strong up-regulation of TGF-beta1 target genes. Both findings indicate plasma vitamin D deficiency and lack of vitamin D signaling in renal tissues. Expression profiling confirms a crucial role for megalin in renal vitamin D metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.