Abstract

The localization of neuropathological lesions along deep sulci and fissures is one of the characteristics of a cerebrum damaged by methylmercury. Edematous changes in white matter have been proposed as the cause of the localization of lesions; however, the molecular mechanisms underlying methylmercury-induced edema remain unclear. Since the vascular endothelial growth factor (VEGF) system regulates vascular permeability and can be involved in the progression of edematous changes, we examined the effect of methylmercury on the expression of VEGF-related proteins in cultured human brain microvascular endothelial cells and pericytes. After methylmercury exposure, mRNA and protein levels of VEGF-A in pericytes and placenta growth factor (PlGF) and VEGF-receptor-1/-2 in endothelial cells were elevated. The induction of pericyte VEGF-A expression was independent of hypoxia-inducible factor-α and hypoxia-response element signaling. Taken together, these results suggest that methylmercury activates the VEGF system in brain microvessels in a paracrine fashion. When the activation occurs in narrow areas such as along the deep sulci in the cerebrum, hyperpermeability and subsequent edematous changes would cause a circulatory disturbance and result in neural cell damage. We propose this as a reason for the localization of the neuropathological lesions along the deep sulci and fissures in the cerebral cortex, such as the calcarine fissure, in patients with Minamata disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.