Abstract

It has often been asked which of the cell types found during the early stages of culturing embryonic chick neural retina can undergo transdifferentiation into lens in vitro. Since neuronal cell-surface toxin receptors are maintained in NR cultures for much longer than internal neuronal enzymes (e.g. choline acetyltransferase), and since the transdifferentiation process can be greatly accelerated by preparing reaggregates of neural retina cells after about 10 days of preculture as "monolayers", a direct test of this question became feasible. 7 or 9 day embryonic chick neural retina cells, precultured for 10-12 days as monolayers, were dissociated and reaggregated under continuous gyration. Reaggregates were maintained for 8 days in the presence of either tetanus toxin or FITC-conjugated α-bungarotoxin, to permit surface-bound toxins to become internalised via receptor turnover. The reaggregates were then dissociated, stained with rabbit antitoxin and FITC-conjugated anti-antibody in the case of tetanus toxin-labelled material, and restained with a rat or mouse antibody against chick δ crystallin followed by the appropriate rhodamine-conjugated anti-antibody. Although both FITC/toxin-labelled cells (putative neurones) and rhodamine/δ crystallin-labelled cells (transdifferentiated lens cells) were abundant, no examples of double-labelled cells were observed with 9 day starting material, and only a very few with 7 day starting material. We conclude that the vast majority of differentiated neuronal cells expressing surface receptors for these toxins do not transdifferentiate directly into lens cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.