Abstract

The multisubunit T cell antigen receptor (TCR) is involved in antigen recognition and signal transduction, leading to T cell activation and rapid down-modulation of the cell surface expressed TCRs. Although the levels of TCR cell surface expression are pivotal to the efficiency and duration of the immune response, the molecular mechanisms controlling TCR down-modulation and re-expression upon activation, remain obscure. Here, we provide a biochemical characterization of the regulatory mechanisms governing TCR expression following long-term T cell activation. We focused primarily on the TCR zeta chain, as this is considered the limiting factor in TCR complex formation and transport to the cell surface. We found that following TCR-mediated activation zeta mRNA is up-regulated by a transcription-dependent mechanism. Concomitantly, zeta protein levels are modified according to a biphasic pattern: rapid degradation coinciding with TCR cell surface down-regulation, followed by a rebound to normal levels 24 h subsequent to T cell activation. Even though there are adequate levels of all the TCR subunits within the cell following 24 h of activation, TCR cell surface expression remained very low, provided the activating antibody is continuously present. Correlative with the latter, we detected a previously undescribed monomeric form of the zeta chain. This form could be indicative of adverse endoplasmic reticulum conditions affecting correct protein folding, dimerization, and TCR assembly, all critical for optimal receptor surface re-expression. Cumulatively, our results indicate that the levels of TCR expression following activation, are tightly controlled at several checkpoints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.