Abstract

SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes have been demonstrated to play a role in somatic embryogenesis in several plant species. As more is learnt about these genes, the view of their role in plant development has broadened. The Medicago truncatula MtSERK1 gene has been associated with somatic embryogenesis and in vitro root formation. In order to study the role of MtSERK1 in development further, the MtSERK1 promoter sequence has been isolated and cloned into a promoter–GUS analysis vector. SERK1 promoter-driven GUS expression was studied in A. tumefaciens-transformed cultures and regenerated plants, in A. rhizogenes-transformed root clones, and in nodulation. In embryogenic cultures, GUS staining is detected after 2 d of culture at the edge of the explant and around vascular tissue. Expression at the explant edge intensifies over subsequent days and then is lost from the edge as callus formation moves inward. MtSERK1 expression appears to be associated with new callus formation. When somatic embryos form, GUS staining occurs throughout embryo development. Zygotic embryos show expression until the heart stage. The in planta studies reveal a number of interesting expression patterns. There appear to be three types. (i) Expression associated with the primary meristems of the root and shoot and the newly formed meristems of the lateral roots and nodule. (ii) Expression at the junction between one type of tissue or organ and another. (iii) Expression associated with the vascular tissue procambial cells. The data led us to conclude that MtSERK1 expression is associated with developmental change, possibly reflecting cellular reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.