Abstract

To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.