Abstract
Calcium signaling regulates secretion of hormones and many other cellular processes in the islets of Langerhans. The three subtypes of the inositol 1,4,5-trisphosphate receptors (IP3Rs), inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), 1,4,5-trisphosphate receptor type 2 (IP3R2), 1,4,5-trisphosphate receptor type 3 (IP3R3), and the three subtypes of the ryanodine receptors (RyRs), ryanodine receptor 1 (RyR1), ryanodine receptor 2 (RyR2) and ryanodine receptor 3 (RyR3) are the main intracellular Ca2+-release channels. The identity and the relative levels of expression of these channels in the alpha-cells, and the beta-cells of the human islets of Langerhans are unknown. We have analyzed the RNA sequencing data obtained from highly purified human alpha-cells and beta-cells for quantitatively identifying the mRNA of the intracellular Ca2+-release channels in these cells. We found that among the three IP3Rs the IP3R3 is the most abundantly expressed one in the beta-cells, whereas IP3R1 is the most abundantly expressed one in the alpha-cells. In addition to the IP3R3, beta-cells also expressed the IP3R2, at a lower level. Among the RyRs, the RyR2 was the most abundantly expressed one in the beta-cells, whereas the RyR1 was the most abundantly expressed one in the alpha-cells. Information on the relative abundance of the different intracellular Ca2+-release channels in the human alpha-cells and the beta-cells may help the understanding of their roles in the generation of Ca2+ signals and many other related cellular processes in these cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.