Abstract

In Proteus mirabilis, a putative phenylalanine decarboxylase (DisA) acts in a regulatory pathway to inhibit class 2 flagellar gene expression and motility. In this study, we demonstrate that DisA expression in Escherichia coli blocked motility and resulted in a 50-fold decrease in the expression of class 2 (fliA) and class 3 (fliC) flagellar genes. However, the expression of flhDC encoding the class 1 activator of the flagellar cascade was unchanged by DisA expression at both the transcriptional and translational levels. Phenethylamine, a decarboxylation product derived from phenylalanine, was able to mimic DisA overexpression and decrease both motility and class 2/3 flagellar gene expression. In addition, both DisA overexpression and phenethylamine strongly inhibited biofilm formation in E. coli. DisA overexpression and exogenous phenethylamine could also reduce motility in other enteric bacteria, but had no effect on motility in non-enteric Gram-negative bacteria. It is hypothesized that phenethylamine or a closely related compound formed by the DisA decarboxylation reaction inhibits the formation or activity of the FlhD4C2 complex required for activation of class 2 genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.