Abstract

BackgroundLewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. However, their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages.MethodsParaffin-embedded slides originating from placental tissue were collected from patients experiencing a miscarriage early in their pregnancy (6–13 weeks). Tissues collected from spontaneous (n = 20) and recurrent (n = 15) miscarriages were analyzed using immunohistochemical and immunofluorescent staining. Specimens obtained from legally terminated normal pregnancies were considered as control group (n = 18). Assessment of villous vessel density was performed in another cohort (n = 10 each group) of gestation ages-paired placenta tissue. Protein expression was evaluated with Immunoreactive Score (IRS). Statistical analysis was performed by using Graphpad Prism 8.ResultsExpression of sLeA, sLeX, LeX, and LeY in the syncytiotrophoblast was significantly upregulated in the control group compared with spontaneous and recurrent miscarriage groups. However, no prominent differences between spontaneous and recurrent miscarriage groups were identified. Potential key modulators ST3GAL6 and NEU1 were found to be significantly downregulated in the recurrent miscarriage group and upregulated in the spontaneous group, respectively. Interestingly, LeX and LeY expression was also detected in the endothelial cells of villous vessels in the control group but no significant expression in miscarriage groups. Furthermore, assessment of villous vessel density using CD31 found significantly diminished vessels in all size groups of villi (small villi <200 µm, P = 0.0371; middle villi between 200 and 400 µm, P = 0.0010 and large villi >400 µm, P = 0.0003). Immunofluorescent double staining also indicated the co-localization of LeX/Y and CD31.ConclusionsThe expression of four mentioned carbohydrate Lewis antigens and their potential modulators, ST3GAL6 and NEU1, in the placenta of patients with miscarriages was significantly different from the normal pregnancy. For the first time, their expression pattern in the placenta was illustrated, which might shed light on a novel understanding of Lewis antigens’ role in the pathogenesis of miscarriages.

Highlights

  • Miscarriage is the most common complication of pregnancy, which affects around 9–20% of clinically confirmed pregnancies

  • Our Gene set enrichment analysis (GSEA) analysis indicated that glycosylation and inflammatory response were significantly changed in recurrent miscarriage (RM) (Figure 2A)

  • To identify potential key enzymes related to Lewis antigens in miscarriage, we evaluated the expression patterns of three a-2,3 sialyltransferases, ST3GAL3, -4, and -6, which act on the NAcetyllactosamine structure (Galb1,3/4GlcNAc) to create Sialyl Lewis A (sLeA)/ X and related sialofucosylated glycans

Read more

Summary

Introduction

Miscarriage is the most common complication of pregnancy, which affects around 9–20% of clinically confirmed pregnancies. The establishment of a healthy pregnancy implies interaction between the embryonal structure and endometrium Any alterations within this process may trigger miscarriages: chromosomal errors, anatomical uterine defects, autoimmune dysregulations, and endometrial abnormality. Most miscarriages, including spontaneous or recurrent events, occur in the first trimester of pregnancy [5] Lewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. Their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.