Abstract

In this study, we developed a method for the expression of the antimicrobial peptide SE-33-A2P in E. coli bacterial cells. The SE-33-A2P peptide consists of A2P and SE-33 peptides and is a retro analog of cathelicidin possessing antimicrobial activity against both Gram-positive and Gram-negative bacteria. Furthermore, the A2P peptide is a self-cleaving peptide. For an efficient expression of the SE-33-A2P peptide, a gene encoding several repetitive sequences of the SE-33 peptide separated by A2P sequences was created. The gene was cloned into a plasmid, with which E. coli cells were transformed. An induction of the product expression was carried out by IPTG after the cell culture gained high density. The inducible expression product, due to the properties of the A2P peptide, was cleaved in the cell into SE-33-A2P peptides. As the next step, the SE-33-A2P peptide was purified using filtration and chromatography. Its activity against both Gram-positive and Gram-negative bacteria, including antibiotic-resistant bacteria, was proved. The developed approach for obtaining a prokaryotic system for the expression of a highly active antimicrobial peptide expands the opportunities for producing antimicrobial peptides via industrial methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.