Abstract

In Alzheimer's disease (AD), fibrillar beta-amyloid protein (fAbeta) accumulates in the walls of cerebral vessels associated with vascular smooth muscle cells (SMCs), endothelium, and pericytes, and with microglia and astrocytes in plaques in the brain parenchyma. Scavenger receptor class A (SR-A) and class B, type I (SR-BI) mediate binding and ingestion of fAbeta by cultured human fetal microglia, microglia from newborn mice, and by cultured SMCs. Our findings that SR-BI participates in the adhesion of cultured microglia from newborn SR-A knock-out mice to fAbeta-coated surfaces, and that microglia secrete reactive oxygen species when they adhere to these surfaces prompted us to explore expression of SR-BI in vivo. We report here that astrocytes and SMCs in normal adult mouse and human brains and in AD brains express SR-BI. In contrast, microglia in normal adult mouse and human brains and in AD brains do not express SR-BI. These findings indicate that SR-BI may mediate interactions between astrocytes or SMCs and fAbeta, but not of microglia and fAbeta, in AD, and that expression of SR-BI by rodent microglia is developmentally regulated. They suggest that SR-BI expression also is developmentally regulated in human microglia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.