Abstract

Xenopus laevis oocytes have been used for the expression of a renal, pyrimidine-selective, Na(+)-nucleoside cotransporter (N2). As compared to its uptake in water-injected oocytes, Na(+)-dependent thymidine uptake was enhanced in a time- and dose-dependent manner in oocytes injected with rat renal cortex total poly(A)+ RNA. An increased uptake was also observed after injection of size fractionated rat renal cortex poly(A)+ RNA (2-3 kb). Consistent with the selectivity of the N2 nucleoside transporter, cytidine significantly inhibited Na(+)-dependent thymidine uptake in oocytes injected with total poly(A)+ RNA whereas guanosine and formycin B did not. Na(+)-dependent thymidine uptake was also enhanced in oocytes injected with size fractionated human renal cortex poly(A)+ RNA (2-3 kb). The above data demonstrate functional expression of renal cortex, Na(+)-nucleoside cotransporters in Xenopus laevis oocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.