Abstract

Antibodies against human placental 17 beta-hydroxysteroid dehydrogenase (17-HSD) and 17-HSD cDNA were used to study the expression of the corresponding enzyme in the immature rat ovary during follicular development and luteinization, which were induced by treating the animals with pregnant mare serum gonadotrophin (PMSG) or with PMSG followed by human chorionic gonadotrophin (hCG). Immuno-blot analysis indicated that the M(r) of the 17-HSD expressed in rat granulosa cells was 35,000, as previously shown for the human placental enzyme. In immunohistochemical studies of untreated immature rat ovaries, only the granulosa cells from small antral follicles were stained. One day after PMSG treatment, strong expression of 17-HSD was observed in the granulosa cells of growing Graafian follicles. A marked decrease in enzyme expression was observed in preovulatory follicles on day 2 of PMSG treatment, starting from the basal layers of granulosa cells and progressing toward the luminal cells. No 17-HSD expression was detected in luteinized follicles or corpora lutea 22 h after hCG injection. The stroma and theca cells were negative for 17-HSD staining. In Northern hybridization analyses, two 17-HSD mRNAs were detected (1.4 and 1.7 kb). The strongest expression for both mRNAs was detected after 1 day of PMSG treatment, coinciding with maximal immunostaining of the enzyme protein. Down-regulation of 17-HSD observed by immunohistochemistry was reflected in a similar decrease in mRNA expression and the signals were almost undetectable 22 h after hCG injection. Our data suggest that 17-HSD expression in rat granulosa cells is up-regulated during follicular development and, thereafter, the enzyme expression is down-regulated during luteinization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.