Abstract

Injection of poly(A)+ RNA from rabbit small intestine into Xenopus laevis oocytes resulted in expression of pH dependent transport of the aminocephalosporin cefadroxil. A cDNA library constructed from a 2.2 to 5 kb fraction was screened for expression of cefadroxil transport after injection of the corresponding cRNA synthetized in vitro from different pools of clones. The single clone identified stimulated uptake of cefadroxil into oocytes about 50-fold at pH 6.5. Kinetic analysis of expressed transport activity revealed a saturable transport system shared by amino beta-lactam antibiotics, dipeptides and selected angiotensin converting enzyme inhibitors. Evidence for rheogenic cefadroxil/H(+)-cotransport was obtained by a) The demonstration that cefadroxil influx increased the inward current in oocytes clamped at a holding potential of -60 mV in sodium-free medium and b) A decrease of intracellular pH in oocytes caused by cefadroxil uptake. Current-voltage relationships in the presence of glycylsarcosine or cefadroxil showed that transport activity is dependent on the membrane potential. Sequencing of the cDNA revealed its identity with the recently cloned peptide transporter from rabbit small intestine designated PepT1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.