Abstract
The newly fertilized preimplantation embryo depends entirely on maternal mRNAs and proteins deposited and stored in the oocyte prior to its ovulation. If the oocyte is not sufficiently equipped with maternally stored products, or if zygotic gene expression does not commence at the correct time, the embryo will die. One of the major abnormalities observed during early development is cellular fragmentation. We showed previously that cellular fragmentation in human embryos can be attributed to programmed cell death (PCD). Here, we demonstrate that the PCD that occurs during the 1-cell stage of mouse embryogenesis is likely to be regulated by many cell death genes either maternally inherited or transcribed from the embryonic genome. We have demonstrated for the first time the temporal expression patterns of nine cell death regulatory genes, and our preliminary experiments show that the expression of these genes is altered in embryos undergoing fragmentation. The expression of genes involved in cell death (MA-3, p53, Bad, and Bcl-xS) seems to be elevated, whereas the expression of genes involved in cell survival (Bcl-2) is reduced. We propose that PCD may occur by default in embryos that fail to execute essential developmental events during the first cell cycle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.