Abstract
Apoptosis repressor with a CARD domain (ARC), which has been shown to protect against oxidative stress-induced apoptosis, was initially found to be highly expressed in terminally differentiated tissues like heart and skeletal muscle. Recently, we and others have found that ARC is also expressed at high levels in multiple cancer tissues and cell lines. Here, we compared the regulation of ARC in response to oxidative stress between cancer cells and other types of cells. Similar to cardiomyocyte cell line H9c2 cells, cancer cells with reduced ARC expression were significantly more sensitive to oxidative stress. However, oxidative stress did not down-regulate ARC expression in cancer cells as it did in H9c2 cells. We further found that in H9c2 cells oxidative stress regulates ARC protein expression post-translationally through proteasome-mediated degradation. In cancer cell line HeLa, the majority of ARC exists in phosphorylated state in the absence of oxidative stress, whereas in H9c2 cells only marginal amount of ARC was phosphorylated under similar conditions. Our data suggest that the high level of ARC protein and the constitutive phosphorylation of ARC in cancer cells may play an important role in the protection of cancer cells against oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.