Abstract

Shikonin and its derivatives are formed in large amounts in dark-cultured Onosma paniculatum cells. In order to isolate and identify the genes regulating shikonin biosynthesis, we constructed and characterized a full-length-enriched cDNA library of dark-cultured cells by using the SMART (Switching Mechanism At 5'-end of RNA Transcript) cDNA synthesis and LD-PCR (long-distance PCR) strategies. The titer of the primary cDNA library was 1.04 x 10(6)pfu/mL with a recombination rate of 99.60%. Most of the cDNA inserts ranged from 1.0 to 2.5 kb, and 78.33% of the 76 randomly selected clones contained full-length coding regions. Expression analysis of randomly selected genes by small scale microarray revealed that 23 genes were down-regulated, including 17 genes with known functions, 2 genes with putative functions, and 4 novel genes, and that 3 genes were up-regulated (two-fold) in cells cultured under white light as compared with those cultured in the dark. Interestingly, two of the down-regulated genes, encoding aci-reductone dioxygenase (ARD)-like protein and ethylene responsive factor (ERF), are involved in ethylene biosynthesis and signal transduction, implying that ethylene might play an important role as a signal molecule in light-regulated shikonin formation. These data contribute to a better understanding of light-involvement in regulating the formation of plant secondary metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.