Abstract

To tolerate biotic stress, plants employ phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) to regulate the immune response against different pathogens. Phytohormone-responsive genes, known as "Defense signaling marker genes," are used to evaluate plant disease resistance during pathogen infection. Most information on these marker genes derives from studies on the model plant Arabidopsis thaliana. The present study was aimed analyze the effect of hormonal elicitation at different concentrations at 24h pos-treatment in the transcript level of 8 traditional genes selected for molecular studies plant-pathogen interactions in Capsicum. Chemical treatment was achieved by spraying leaves of in vitro seedlings C. annuum L. with 0.1mM, 1mM or 2.5mM ET; 1mM, 2.5mM, or 5mM SA; 2.5mM BABA; or 0.150mM MeJA. Twenty-four hours after treatments were applied molecular analyses were carried out using qPCR to investigate the expression. Results revealed that 1mM of ET or 0.15mM of MeJA activated the expression CaPR1 (18--11.64-fold change), CaLOX2 (13.80-fold), CaAP2/ERF06 (22- 5.3- fold change), and CaPDF1.2 (2.3-1.5- fold). While, 5mM of SA present effect of negative regulation on the expression in most of these genes. Our results show that the expression profile induced by phytohormones in CaPR1 are particular in C. annuum, because were significantly induced for ET/MeJA, and dow-regulation with SA Contrary to Arabidopsis. Although, on both plants it is observed the cross talk between JA/ET and SA mediated signal pathways for the regulation of this gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.