Abstract

Multiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that has been purported to be more virulent than antibiotic-sensitive counterparts. The paradigm for this multiresistant/hyperpathogenic phenotype is Salmonella enterica serotype Typhimurium phage type DT104 (DT104). The basis for the multiresistance in DT104 is related to an integron structure designated SGI1, but factors underlying hyperpathogenicity have not been completely identified. Since protozoa have been implicated in the alteration of virulence in Legionella and Mycobacterium spp., we attempted to assess the possibility that protozoa may contribute to the putative hypervirulence of DT104. Our study reveals that DT104 can be more invasive, as determined by a tissue culture invasion assay, after surviving within protozoa originating from the bovine rumen. The enhancement of invasion was correlated with hypervirulence in a bovine infection model in which we observed a more rapid progression of disease and a greater recovery rate for the pathogen. Fewer DT104 cells were recovered from tissues of infected animals when protozoa were lysed by preinfection chemical defaunation of the bovine or ovine rumen. The protozoan-mediated hypervirulence phenotype was observed only in DT104 and other Salmonella strains, including serovars Agona and Infantis, possessing SGI1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.