Abstract

Developmental exposure to Mn caused Mn accumulation in the brain tissue and transient disruption of granule cell neurogenesis, targeting the late stage differentiation of progenitor cells in the subgranular zone of the hippocampal dentate gyrus of rats. Because neurogenesis is influenced by proinflammatory responses, this study was performed to determine whether Mn exposure causes microglial activation in the dentate hilus, a region anatomically close to the subgranular zone of the dentate gyrus. Pregnant rats were treated with dietary MnCl2 · 4H2O at 32, 160 or 800 ppm from gestational day 10 to day 21 after delivery. An immunohistochemical analysis revealed increases in Iba1(+) microglia in the hilus on postnatal day 21 following exposure to MnCl2 · 4H2O in a dose-unrelated manner at 32 and at 800 ppm and an increase in CD163(+) macrophage at 800 ppm in the hilus. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in the mRNA levels of Il1α, Il6, Nos2 and Tnf after 800 ppm MnCl2 · 4H2O. These results suggest that activation of microglia and perivascular macrophages occurs in the hilus after developmental exposure to MnCl2 · 4H2O at 800 ppm, and probably involves the disruption of neurogenesis through the accumulation of Mn in the brain tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.