Abstract

Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.