Abstract

Anthropogenic activities are promoting the proliferation of aquatic primary producers in freshwater habitats, including cyanobacteria. Among various problems stemming from eutrophication, cyanobacterial blooms can be toxic due to the production of secondary compounds, including microcystins such as microcystin-LR (MC-LR); however, it is unknown whether cyanotoxins can affect the susceptibility of aquatic vertebrates such as fish and larval amphibians to parasites or pathogens even though infectious diseases can significantly affect natural populations. Here, we examined how exposure to environmentally relevant concentrations of MC-LRs affected the resistance of larval amphibians (northern leopard frog, Rana pipiens) to infection by a helminth parasite (the trematode Echinostoma sp.), and whether this was manifested by reductions in host anti-parasite behavior. Exposure to a relatively high (82μgL-1) concentration of MC-LR caused over 70% mortality, and tadpoles that survived exposure to the low MC-LR (11μgL-1) treatment had significantly higher infection intensities than those in the control; however, anti-parasite behavior was not affected by treatment. Our results indicate that MC-LR can have both direct and indirect negative effects on larval amphibians by increasing their mortality and susceptibility to parasitism, which may have implications for other aquatic vertebrates in eutrophic habitats dominated by cyanobacteria as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.