Abstract

beta H-crystallin was exposed to radiolytically generated hydroxyl radicals at defined radical concentrations, and its capacity to act as an amine-acceptor substrate and as an amine-donor substrate for transglutaminase were investigated. [14C]Methylamine was used as a probe for labelling amine-acceptor sites; a novel biotinylated hexapeptide was used to label amine-donor sites. The results demonstrate that both primary amine incorporation and hexapeptide incorporation by transglutaminase are considerably increased after oxidative attack on the crystallin. The identity of the labelled subunits was established, and it is shown that, in both cases, this increased incorporation is not due to the production of new substrates, but that the existing incorporation sites become more susceptible. Moreover, using the newly developed probe, we could identify, for the first time, the major crystallin subunits active as amine-donor substrates (both before and after treatment) to be beta B1-, beta A3- and beta A4-crystallin. These data support the proposal that oxidative stress and transglutaminase activity may be jointly involved in the changes found in lens crystallins with age and in the development of cataract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.