Abstract

By using an intermittent control approach, this paper is concerned with the exponential synchronization and L2 -gain analysis for a class of delayed master-slave chaotic neural networks subject to actuator saturation. Based on a switching strategy, the synchronization error system is modeled as a switched synchronization error system consisting of two subsystems, and each subsystem of the switched system satisfies a dwell time constraint due to the characteristics of intermittent control. A piecewise Lyapunov-Krasovskii functional depending on the control rate and control period is then introduced, under which sufficient conditions for the exponential stability of the constructed switched synchronization error system are developed. In addition, the influence of the exogenous perturbations on synchronization performance is constrained at a prescribed level. In the meantime, the intermittent linear state feedback controller can be derived by solving a set of linear matrix inequalities. More incisively, the proposed method is also proved to be valid in the case of aperiodically intermittent control. Finally, two simulation examples are employed to demonstrate the effectiveness and potential of the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.