Abstract

A general dynamic model is proposed for describing a large class of nonholonomic systems including extended chained systems, extended power systems, underactuated surface vessel systems etc. By introducing an assistant state variable and a time-varying state transformation based on the concept of minimal dilation degree, this class of nonholonomic systems is transformed into linear time-varying control systems, and the asymptotic exponential stability is thus achieved by using a smooth time-varying feedback control law. The existence and uniqueness of the minimal dilation degree for the discussed systems are also proved under certain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.