Abstract
It is shown that a strictly-input passive linear finite dimensional controller exponentially stabilizes a large class of partial differential equations actuated at the boundary of a one dimensional spatial domain. This follows since the controller imposes exponential dissipation of the total energy. The result can by use for control synthesis and for the stability analysis of complex systems modeled by sets of coupled PDE's and ODE's. The result is specialized to port-Hamiltonian control systems and a simplified DNA-manipulation process is used to illustrate the result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.