Abstract

We introduce a new class of exponential integrators for the numerical integration of large-scale systems of stiff differential equations. These so-called Rosenbrock-type methods linearize the flow in each time step and make use of the matrix exponential and related functions of the Jacobian. In contrast to standard integrators, the methods are fully explicit and do not require the numerical solution of linear systems. We analyze the convergence properties of these integrators in a semigroup framework of semilinear evolution equations in Banach spaces. In particular, we derive an abstract stability and convergence result for variable step sizes. This analysis further provides the required order conditions and thus allows us to construct pairs of embedded methods. We present a third-order method with two stages, and a fourth-order method with three stages, respectively. The application of the required matrix functions to vectors are computed by Krylov subspace approximations. We briefly discuss these implementation issues, and we give numerical examples that demonstrate the efficiency of the new integrators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.