Abstract
We study the asymptotic behavior of solutions to the second boundary value problem for a parabolic PDE of Monge-Amp\`ere type arising from optimal mass transport. Our main result is an exponential rate of convergence for solutions of this evolution equation to the stationary solution of the optimal transport problem. We derive a differential Harnack inequality for a special class of functions that solve the linearized problem. Using this Harnack inequality and certain techniques specific to mass transport, we control the oscillation in time of solutions to the parabolic equation, and obtain exponential convergence. Additionally, in the course of the proof, we present a connection with the pseudo-Riemannian framework introduced by Kim and McCann in the context of optimal transport, which is interesting in its own right.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.