Abstract

Weak magnetic detection technology can detect stress concentration areas in ferromagnetic materials. However, the stress non-uniform characteristics of pipeline welds lead to significant differences in stress distribution range and values between inner wall welds and outer wall welds. This discrepancy makes it crucial to further evaluate the impact of stress non-uniformity on magnetic signals. To study the magnetic signal characteristics under the influence of residual stress in weld seams, a magneto-mechanical analytical model was established based on the magnetic charge theory and the distribution characteristics of residual stress in the weld seam. The magneto-mechanical relationship and magnetic signal distribution characteristics at the inner and outer wall welds of the pipeline are calculated. Furthermore, the effects of different excitation intensities on the amplitude growth characteristics of magnetic signals are analyzed and compared. To verify the analysis model, weld detection experiments with different excitation intensities were designed. The results show that both the peak-to-valley values of the normal component and the peak values of the tangential component of the outer wall weld are lower than those of the inner wall weld. Conversely, the peak-to-valley width of the normal component and the peak width of the tangential component are greater than those of the inner wall weld. Additionally, the rate of increase in weak magnetic signal amplitude decreases in a first-order exponential relationship with increasing excitation intensity. The average decay rates of the normal and tangential component amplitude growth rates for the inner wall weld are 34.03% and 27.9%, respectively, while for the outer wall weld, they are 31.75% and 28.01%, respectively. This study contributes to the identification and quantitative assessment of weak magnetic signals in inner and outer wall welds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.