Abstract

The exploration of repeated patterns with different lengths, also called variable-length motifs, has received a great amount of attention in recent years. However, existing algorithms to detect variable-length motifs in large-scale time series are very time-consuming. In this paper, we introduce a time- and space-efficient approximate variable-length motif discovery algorithm, Distance-Propagation Sequitur (DP-Sequitur), for detecting variable-length motifs in large-scale time series data (e.g. over one hundred million in length). The discovered motifs can be ranked by different metrics such as frequency or similarity, and can benefit a wide variety of real-world applications. We demonstrate that our approach can discover motifs in time series with over one hundred million points in just minutes, which is significantly faster than the fastest existing algorithm to date. We demonstrate the superiority of our algorithm over the state-of-the-art using several real world time series datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.