Abstract

In this work, we study various hybrid models of entropy-based and representativeness sampling techniques in the context of active learning in medical segmentation, in particular examining the role of UMAP (Uniform Manifold Approximation and Projection) as a technique for capturing representativeness. Although UMAP has been shown viable as a general purpose dimension reduction method in diverse areas, its role in deep learning-based medical segmentation has yet been extensively explored. Using the cardiac and prostate datasets in the Medical Segmentation Decathlon for validation, we found that a novel hybrid combination of Entropy-UMAP sampling technique achieved a statistically significant Dice score advantage over the random baseline (3.2% for cardiac, 4.5% for prostate), and attained the highest Dice coefficient among the spectrum of 10 distinct active learning methodologies we examined. This provides preliminary evidence that there is an interesting synergy between entropy-based and UMAP methods when the former precedes the latter in a hybrid model of active learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.