Abstract
Variable bandwidth kernel density estimators increase the window width at low densities and decrease it where data concentrate. This represents an improvement over the fixed bandwidth kernel density estimators. In this article, we explore the use of one implementation of a variable kernel estimator in conjunction with several rules and procedures for bandwidth selection applied to several real datasets. The considered examples permit us to state that when working with tens or a few hundreds of data observations, least-squares cross-validation bandwidth rarely produces useful estimates; with thousands of observations, this problem can be surpassed. Optimal bandwidth and biased cross-validation (BCV), in general, oversmooth multimodal densities. The Sheather–Jones plug-in rule pro-duced bandwidths that behave slightly better in this respect. The Silverman test is considered as a very sophisticated and safe procedure to estimate the number of modes in univariate distributions; however, similar results could be obtained with the Sheather–Jones rule, but at a much lower computational cost. As expected, the variable bandwidth kernel density estimates showed fewer modes than those chosen by the Silverman test, especially those distributions in which multimodality was caused by several noisy minor modes. More research on the subject is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Stata Journal: Promoting communications on statistics and Stata
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.