Abstract

A unique way of converting free space light into a local electromagnetic field in small spaces is via metallic nanostructuring. In this work fabrication, experimental characterization and simulation of surface-enhanced Raman scattering (SERS) active specimens based on Au nanostructures are discussed. We used displacement Talbot lithography (DTL) to fabricate silicon nano-wedge substrates with Au nanostructures embedded around their apices. After the ion beam etching process, a nanogap is introduced between two Au nanostructures templated over nano-wedges, yielding specimens with SERS characteristics. The Au nanostructures and the nanogaps have symmetric and asymmetric configurations with respect to the wedges. With this nanofabrication method, various wafer-scale specimens were fabricated with highly controllable nanogaps with a size in the order of 6 nm for symmetric gaps and 8 nm for asymmetric gaps. SERS characteristics of these specimens were analyzed experimentally by calculating their analytical enhancement factor (AEF). According to finite-difference time-domain (FDTD) simulations, the Raman enhancement arises at the narrow gap due to plasmonic resonances, yielding a maximum AEF of 6.9 × 106. The results highlight the SERS activity of the nanostructures and ultimately comply with reliable substrates for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.