Abstract

Here, we present systematic investigation of the structural and mechanical stability, electronic profile and thermophysical properties of f-electron based XNPO3 (X = Na, Cs, Ca, Ra) perovskites by first principles calculations. The structural optimization, tolerance factor criteria depicts the cubic structural stability of these alloys. Further, the stability of these materials is also determined by the cohesive and formation energy calculations along with mechanical stability criteria. The electronic structure is explored by calculating band structure and density of states which reveal the well-known half-metallic nature of the materials. Further, we have calculated different thermodynamic parameters including specific heat capacity, thermal expansion, Gruneisen parameter and their variation with temperature and pressure. The thermoelectric effectiveness of these materials is predicted in terms of Seebeck coefficient, electrical conductivity and power factor. All-inclusive we can say that calculated properties of these half-metallic materials extend their route in spintronics, thermoelectric and radioisotope generators device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.