Abstract
Abstract. This study estimated maize grain biomass, and grain biomass as a proportion of the absolute maize plant biomass using UAV-derived multispectral data. Results showed that UAV-derived data could accurately predict yield with R2 ranging from 0.80 – 0.95, RMSE ranging from 0.03 – 0.94 kg/m2 and RRMSE ranging from 2.21% – 39.91% based on the spectral datasets combined. Results of this study further revealed that the VT-R1 (56–63 days after emergence) vegetative growth stage was the most optimal stage for the early prediction of maize grain yield (R2 = 0.85, RMSE = 0.1, RRMSE = 5.08%) and proportional yield (R2 = 0.92, RMSE = 0.06, RRMSE = 17.56%), with the Normalized Difference Vegetation Index (NDVI), Enhanced Normalized Difference Vegetation Index (ENDVI), Soil Adjusted Vegetation Index (SAVI) and the red edge band being the most optimal prediction variables. The grain yield models produced more accurate results in estimating maize yield when compared to the biomass and proportional yield models. The results demonstrate the value of UAV-derived data in predicting maize yield on smallholder farms – a previously challenging task with coarse spatial resolution satellite sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.