Abstract

BackgroundGastrointestinal cancer poses a considerable global health risk, encompassing a heterogeneous spectrum of malignancies that afflict the gastrointestinal tract. It is significant to develop efficacious therapeutic agents, as they are indispensable for both the treatment and prevention of this formidable disease. MethodsIn this study, we synthesized a novel thiophene derivative, designated as compound 1312. An assessment was performed to investigate its anti-proliferative activity in several cancer cell lines (GES-1, EC9706, SGC7901, and HT-29). Furthermore, we performed molecular biology techniques to investigate the inhibitory impact of compound 1312 on gastrointestinal cell lines SGC-7901 and HT-29. ResultsOur findings reveal that compound 1312 exhibits significant efficacy in suppressing colony formation of cancer cells. Notably, it triggers cell cycle arrest at the G2/M phase in gastrointestinal cell lines SGC7901 and HT-29. Compound 1312 was confirmed to exert inhibitory effects on cell migration and invasion in SGC7901. Additionally, the compound elicits apoptotic cell death through the activation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) and the caspase signaling cascade. Furthermore, in vitro experiments revealed that compound 1312 effectively suppresses both the β-tubulin cytoskeletal network and the Wnt/β-catenin signaling pathway. These multifaceted anti-cancer activities highlight the potential of compound 1312 as a promising therapeutic agent for the treatment of gastrointestinal malignancies. ConclusionThis study indicates the promising potential of compound 1312 as a prospective candidate agent for gastrointestinal cancer treatment. Further comprehensive investigations are needed to explore its therapeutic efficacy in greater detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.