Abstract

Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.